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RESEARCH MEMORANDUM

A COMPARISON OF TwO METHODS FOR COMPUTING THE WAVE
DRAG OF WING-BODY COMBINATIONS

By Alberte Alksne
SUMMARY

Computations of wave drag based on linearized theory have been per-
formed for four wing-body combinations tested by Whitcomb and reported
in NACA RM 152H08. The results are shown in comparison with the experi-
mental data. Two computational techniques for evaluating the integrals

- in the theoretical expressions for wave drag are discussed, namely,
Fourier series and graphical or numerical integration. Advantages and
disadvantages of each are pointed out.

INTRODUCTION

Recently Whitcomb (ref. 1) has postulated, and demonstrated experi-
mentally, that the wave drag of a system of wings and bodies at & free-
stream Mach number very near unity 1s epproximately the same as that of
an equivalent body of revolution, that is, of a body of revolution having
the same streamwise distribution of cross-sectional area. A similar con-
clusion was reached by Hayes (ref. 2) as a limiting case of linear theory
as the Mach number goes to 1, and can be expressed by the formuls given
by Heaslet, Lomax, and Spreiter (ref. 3).

PN
Dagsity = - 2 [ [ e Gdinln - mlonee @)

o "o

where f£!(x) is the derivative with respect to x of a source strength
which is related to the system of wings and bodies under consideration,
- 1 is the over-all length of the system and £(0) = £(1) = O.
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Por a slender body of revolution the source strength is proportional
to the normal component of the stream velocity at the body surface, end
sources of the appropriate strength may be placed on the x axis. Equa-
tion (1) then reduces to the following, which is also recognizable as
von Karmén's Pormula for supersonlc wave 'drag (ref. U4).

v2 T .1
D(m_91+)=—%f f S”(xl)S"(xz)lnlxl - led.xld.xz (2)
o o

where S''(x) is the second derivative with respect to x of the cross-
sectional area Intercepted by a plane perpendicular to the stream direc-
tilon. For Mach numbers near 1 this formula can be used also for wing-
body combinations, provided the area dilstribution is sufficilently smocth
and appropriate conditlons apply at the nose and taill.

In the case of supersonlc flow, wing theory provides the focllowing
formule which is exsct, within the limits of linear theory, for a plane
nonlifting wing (ref. 2):

2% [ '
D = 2o Jf de d/‘Jr £1(x;,B cos 6)F!(x,B cos 6)1n|xy - xp |dxidxs
8 o o O ’ ' ’ j

(3)

where B =~JM62-1 and 6 is the azimuth angle (see sketch (a)).

In reference 2 relations are given between the velocity components on
the wing and the source strengths, integrated along the lines on which
X + yB cos 8 = constant and concentrated on the axis at the polnt of
intersection. : ’

\ The problems of interest
" at present concern more compli-

cated configurations made up
- of wilngs and bodles in combina-
‘ tion, and in this case a diffi-
culty arises in fixing the
relations between the geometry
of the conflgurations and the
strengths of the singularities
/ to be used in simlating the
actual shape. In reference S
"R. T. Jones presented a super-
sonic area rule which is appli-
. cable to a large class of wilng-
body combinations 1ncluding
Sketch (a) . configurations involving thin

A—x-xo=yfBcosb
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wings mounted centrally on slender bodles of revolution. In effect, the
supersonic area rule introduces into equation (3) the approximate relation

£1(x,B cos 6) = 811 (x,,B cos 8)

where the primes indicate differentiation with respect to x, and where
S(xg,8 cos 8) is the projection normal to the stream direction of the
crosgs-sectional area intercepted by a plane tangent at 6 +to the Mach
cone whose vertex is at the point xp on the x axis. Returning to
sketch (a) one can see that the plane tangent to the Mach cone inter-
sects the xy plane in the line x-x5 = yB cos 8. It was along such
lines that the sources were Integrated in the case of a plane, nonlifting
wing discussed 1n reference 2.

The use of the sbove relation for f£!'(x,B cos @) makes 1t possible
to rewrite equation (3) as Pollows:

o v 2 2% 1 1
D=--290_ f d@ff S11(x1,B cos 0)8''(xp,B cos 8)1n|x, - x| dx 8%,
- 817 o o o©
(ba)
- After two integrations by parts, taking proper account of the singulari-
ties, and the use of the requirement that S!(0) = 8'(1) = Q, this
reduces to .
v 2 2% 1 .1 1 1
p = PVo L/“ ng{’j[ S'(x,,B cos 8)S'(x,,B cos 0)dx,dxo
2
8ﬂ? © ¢ o (xl"xé)
oV 2 21
= =2 g ‘/h [T(B cos 6)lde (kb)
8= o

vhere I(B cos @) is defined by the double integral. Note the use of
the symbol to indicate the “generalized principal part" as discussed
by Heaslet and Lomax in reference 6.

The present paper applies the theoretlical formuilas glven gbove to
compute wave drag and discusses the technique of carrying out the arnaly-
. sis. Procedures for computing the area distributions, S(xb,ﬁ cos e),
and their derivatives, S'(x,,B cos 8), for a given configuration are dis-
- cussed and certain convenient simplificatlons are studied. Two computa-
tional methods of evaluating the integrals are considered, namely, Fourier



analysis and numerical integration.
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The Fourler serilies method has been

previously considered in references 5 and 7.

A

A, (B cos 6)

an

Cp

c or c(y)

D
£(x)

I or
I(B cos 8)

K
1
Mo

m,n

SYMBOLS

aspect ratio

FPourier coefficients corresponding to S%
T
% b[‘ S'(xg5,B cos @)sin np dy
e}
same as Ap(B cos 6)

(The parenthesis is dmitﬁdd for convenience when it is not
important to stress the functional nature of the symbol.)

T
Fourier coefficients corresponding to s'; %}jp s! 8in ng do
o

wave-drag coefficlent, —?f%?———

S Yo
7 Sw

local chord of wing

wave drag

source strength at x
value of double integral in equation (Ib) (see also eq. (10))

maximum helight of peak of an arbitrary curve
over-all length of wing-body system
free-stream Mach number

integexrs

radius of body

waximm radius of body

same as S(xg,B8 cos @) or S(x)
(The parenthesis is omitted for convenience when it is not
important to stress the functional nature of the symbol.)
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cross-sectional ares in plane perpendicular to free-stream
direction

projection on plane x=xg of cross-sectional area in a

plane tangent at 6 +to a Mach cone originating at xg

(see sketch (a))

areg, of wing plan form inciluding that part masked by the
body :

component of S; S =81 + 855 + . . ;

local thickness of wing (twice the ordinate of the upper
surface)

locel thickness ratio of‘wing
free-stream velocity

Cartesian coordinates (see sketch (a))
vertex of Mach cone (see sketch (a))

limits of integration
2

Mo -1
half width of pesk of an arbitrary curve

ezimuth angle, angle in an x = constent plane which
identifies a point on the Mach cone (see sketch (a))

free-stream density

arc cos < - ?)

value of @ at maximum point of peak of an arbitrary
curve

differentiation with respect to =x or x4

DISCUSSION OF COMPUTATIONAL: METHODS

Generally speaking, the formulas for wave drag given in the Intro-
duction, specifically, equations (2), (ka), and (4b), cannot be expected
to give a realistic magnitude of the wave drag at & Mach number of 1,
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since the pressures, in linear theory, become infinite. However, as the
Mach number increases the agreement should improve. The more slender
the configuration the narrower should be the range of Mach numbers show-
ing poor agreement between theoretical and measured wave drag.

Furthermore, difficulties can be expected to arise in the use of
equations (2) and (4) whenever there are discontinuities in ST or S''.
Some singularities are, of course, integrable. For instance, sc simple
a confliguration as a Sears-Haack body podsesses a singularity in S'!
at the nose, yet integration produces a finite drag. Any configuration
with a step in the S' curve has an infinite value of I{(B cos 8) in
equation (Lb) for every value of 6 for 'which the step occurs. Such a
step, for instance, cccurs when the leading edge of & wing lies along a
Mach line unless the leading edge is cusped. It 1s possible to obtain
Pinite drag, using equation (4b), for configurations having s finlte
number of logarithmic singularities in I(B cos 6), but not for a con-
filguration for which the infinity extends over a finite range of 4.

The first and most difficult step in evaluating the wave drag is
the performance of the double integration with respect to x, that 1s,
the evaluation of I(B cos 6). Difficulties arise from several sources.
First, the evaluation of S'(x,,B cos 8) is not simple for a configura-
tion of practical interest. Second, this function, when found, is not
generally known in analytic form and some means of approximating it by
an analytlical expresslon is desirable as 2 means of avolding detailed
numerical calculations. Third, the integrand has & singularity at
X1 = X &and therefore 1s not sultable for direct numerical integration
in this form. )

Ways of surmounting these difficulties are discussed in the follow-
ing sections. : .

Computation of St'(xg,B cos 8)

Before undertaking the computetion of S'(xy,B cos 8) as defined
following equation (3), it is desirable to make a further simplifying
assumption. If the system consists of a body combined with a thin wing
lying in the xy plane, as was the case for the configurations studied
herein, it 1s assumed satisfactory to replace the plane tangent to the
Mach cone by a plane perpendicular to the xy plane through the line
X - Xo =yB cos 8. It is then posslble, as was done for reference T, to
plot the ordinates of the wing and body at points in thils plane, project
on the plane x = x,, Integrate to get S(xo,B cos 8), and plot the
results as a function of xg5. The resulting dats can then be differen-
tiated graphically or nmumerically to obtailn S'(xg,B cos 8). However,
such a differentilation is difficult to perform accurately and care must
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be taken in fairing the resulting points if a2 realistic plcture of
S'(xo,B cos 8) for the configurati?n is to be obtained.

In the following paragraphs a procedure is shown Pfor computing
S’(xo,B cos @) without resorting to nmumerical differentiation except in
certain particular cases. It consists in setting up an analytical
expression for S(xy,B coss8) which can be differentiated analytlcally,
thus making both S and S' Y readily available.

The wing-body system to be studied is Pfirst broken down into its
various components. For instance in the present cases the body and each
wing penel are considered separately. The curve S(xo,B cos 6) or
S'(xo,B cos 6) of the whole system is then the point-by-point sum of the
curves for the components.

Calculation of S'(XO,B cos @) for a body of revolution.- To obtain
S'(xo,ﬁ cos @) analytically Ffor even a simple body of revolution is some-
what difficult and it becomes much more so for an irregular indented
body. However, it has been assumed 1n the present case that for a slender
body a further approximation is permissible at Mach mmbers near 1,

- namely, S'(x,) can be substituted for S*(xg,B cos 8), which means that

only cuts perpendicular to the stream direction need be used. This is
in accordance with slender-body theory.

As will be shown later in this paper, unless the body modifications
are slight and gradual the wave-drag results will be somewhst different,
depending on whether normal cuts or slant cuts are used in the computa-
tion of S' of the body. A difference will appear when the abruptness
of the body modification results in a significant difference between the
area in & plane normal to the stream direction and the projection on
that plane of the area In a plane at an oblique angle having the same
intersection with the x axis., This is contrary to the assumptions of
slender-body theory and the question of whether or not the added complex-
ity of using slant cuts through a body of revolution is justifisble for
Mg > 1 has not been determined. ’

When the radius of a body of revolution is known as & function of
X0, both S(x,) and S'(x,) are readily cobtained. For a body which
has been modified in accordance with Whitcomb's area rule to give the
same S'(xy) at Mg = 1 for the wing-body combination as for the ummodi-
fied or basic body alone, the relation of the radius to x5 in the
modified region usually cannot be expressed as a simple funetion, but in
that case S®(x;) of the modified region is simply S!(x,) of the basic
body less 8S'(xy) of the wings. Thus for this type of modification,
no numerical differentiation 1s required to obtain S'(x,) of the modi-
fied region if S'(xb) of the wings can be computed directly, and if
St (x,) of the basic body is kmnown.
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Calculation of S'(xg,B cos 8) for a wing panel.- To obtailn

S(xo,B cos 8) and S'(xg,B cos @) for a wing panel for which the thick-
ness ratio t/c and plan form can be expressed as functions of x and ¥y,
it is only necessary to make the substitution

X = X5 + ¥yB cos O

y =¥

so that g(x,y) can be replaced by %(xo;&;B"COs'e). Then

b 4

---— average value
of y of the wing
root as used in
the computations

N

Z\

indented
body

cylindrical
body
X=Xg+ Y B COS 8

1

X
Sketeh (b)

S*(xq,B cos 6) = [—-a—b’z(xo;ﬁ. cos

dxg

[ -aa— vi(xo,B coe
X0

S(xo, B8 cos 8)

=fy25 [ g(xo,y,s cos e)] [e(y)lay

Y

and

S1(xg,B cos 8) = SE;-S(XO,B cos B8)

- 2. irT [3-‘ ]
axo;/;l ¢(x0,¥,8 cos @) | [ely)]dy

where | ¢ 1s the local chord and the
limits vy, and y, are functions of
x, and P cos 6 determined from the
plan form (see sketch (b)).

The differentiééi;ﬁ cén be per:>
formed as follows:

) | [ £r0sv2,8 cos @) | tetra)] -

e):l [%‘(Xo,yl,ﬁ cos 6)] le(yi)] +

fyz o [ & G057, cos e)] [e(y)Jay (5)
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The only instances in which the first two terms on the right will not
venlsh occur when one of the limits is & function of =xg where the
thickness ratio has at the same time a nonzero value. This will occur
&t the wing root when the wing is attached to a body of varying radius
as in an indented region. If the varistion of r with x; 1is small, it
is permissible to use a constant, aversge value of r, or y, at the junc-
ture of the wing and body, thus completing the elimination of the first
two terms. This simplification, which amounts to the assumption of a
straight wing root, was used in the present computdtions and investiga-
tion showed that the error introduced was negligible for the cases
considered. ’ i

It is usually possible to devise an approximate expression for the
thickness ratio of the wing, in terms of ' x and y, for which the integral
in equation (5) can be evaluated analytically. If a single simple expres-
sion cannot be found, no great complication is introduced by using dif-
Perent expressions for different reglons of the wings. This technique
permits direct computation of Sf(xg,B cos 6) for each wing panel without
resort to graphical dlfferentistion. In fact, the computation of St
may be no more difficult than the computation of S.

Evaluation of Wave-Drag Integrals by Fourier Series

The function S'(xo,ﬁ cos @) for a wing-body combination can gener-
ally be determined at as many points as may be required, but cannot,
except in special cases, be expressed in a simple anslytical form. How-
ever, it can be approximated by a Fourier series:

S*(x0,B cos 6) = }; An(B cos 8)sin n¢)
g n=1
where
_ ( 2xo
@ = arc cos -
1
and
w
An(B cos 8) = %-b/‘ St(xy,B cos 6)sin np de
o

where the notation An(B cos 6) indicates that the coefficients are
functions of both Mach number and azimuth angle.

| o - m———
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When the Fourler series has been substituted for S'(xo,B cos 8) in
equation (4b), the first two integrations can be performed to give

o =2
D = p° ° bfs }; n[An(B cos 6)] ae (6)

n=1

At My =1, since B cos 8 = O for all values of 6, equation (ha)
reduces to equation (2) and :

00

2
e,V :
Dgprt) =2 ). m () (7

n=1

(See refs. T and 8.)% For other Mach numbers it 1s usually convenient
ta perform the final integration graphically.

The Fourier series method of performing the first two integrations
1s admirably suited to the use of punched-card computing machines or
other mechanized computing systems as long as the S'(xg,B cos 2]
curves are smooth and without sharp peaks. When such machines are
available. and the information 1s provided 1in the form of plots of
8!'(x0,B cos 8) vs. @, the evaluation of the double integral for each
case requires only about 2 hours.

One dravback of the above method.is thet if the S' curve has sharp
peaks, the Fourler series will not be gble to represent the function ade-
quately in a reasonable mumber of terms. For the present analysis 2k
terms were available and 1ln some cases that was not enough to bring the
series to convergence. In such a case the solution, per se, 1s clearly
not valid. Various checks are avallable to determine the convergence of
the series for a particular case though little can be sald in general.

The coefficlents can be used to recompote an S' curve to compare with
m

that originally provided, or the ;; n(An)Z® can be plotted against m

n=1i
and the trend noted, or some forecast of the number of terms requlred for
convergence can be obtalned by a method such as that shown in the next
section. . -

Note that in reference 8 the Fourier coefficlents differ by =
from thaose defirned herein. .
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Further Investigatlion of the Fourier Series Method

The Fourier series method has been used in reference T as well as
by the present author for the computation of wave drag from equation (Ub),
and it is subjJect to the danger already pointed out of failure of the
series to converge in the available mumber of terms. For this reason a
further study was undertaken, leading to & clearer plicture of the rela-
tion between S'(x5,B cos @) and the corresponding Fourier coefficients.
In addition, the technique developed for this study was used in evaluat-
ing the simplifications mentioned in the section on computation of
S(x0,B cos ) and S'(xo,B cos §).

Computation of Fourler coefficlents for isolated pesks.- If the
curve to be represented 1s considered as the sum of a number of compon-
ents

Bt = 83" 4+ 85T + 8537 + . . .

- the corresponding Fourier series is then the sum of the series repre-
senting the components, from which it follows +that

An=&nl+an2+an8+. « o

where

2

11
an, = f £1' sin ng dg

[e]

Now if a component 8;! consists of a single peak (see sketeh (c)),
the analytical form of the general term for the coefficients of a Fourier
sine series representing s' can be
stated as follows: IFf a peak of height
K end width 28 is located at ¢ = @ F=o
then, assuming the peak to be an isos- s=A
celes triangle, application of the
Fourier formula ylelds

_ b .
an = —— (1 - cos nd)ein ng, (8)
or, assuming the peak to be the upper o y
- . half of a gine wave & ng{ 7

Sketch (c)

' E
.



Security Classification of This Report Has Been Cancelled

12 h NACA RM A55A06a

2K 1
an = S5 cos nd sin no, (9)
n & 2 (1[/ _8)2 7 P ]

o)

K sin nQ,
' lim ap s
n->(x/25)

It is useful to note that both expressions divide naturally into
three parts: a periodic function whose periocd depends on Pys & periodic
function whose period depends on &, and & damping factor of the order

of l/n . For & sharp narrow peak_(ﬁ << 1), cos nd is a very long
period functlon and, when combined with the damping factor, it provides
an envelope within which the shorter period ascillations due to sin ne,
are confined. This permits an estimate of the maximum possible size of
e component ap for any value of n. Sketches (d-1) and (d-2) show the
coefficlents an, and the envelope for a peak of height K = -0.85

O
4

o compuled by eq (9)

A previous compulations .
3 K=:85 ' o =75

2? /.98 a?mws é;'&Orvdmws
2 36 : 28157 «
s

_—envélope of g, T TN —envelope of a,,

20 4 8 /12 6 20 24 28 32 o 4 & 12 16
7 Iz

Sketch (d-1) S Sketch (d-2)
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and width 23 = 0.36 radians located at @y = 1.98 radlans, compered
with a siwmilar plot of the coefficients ap and envelope, for a peak

- of helght K = 0.75 and width 28 = 1.57 raﬁians located at @, = 0.8
radians. Note that for n > 5 the sharp peak (28 = 0.36) would play the
dominent role in the sum An = an, + 8n,. (The coefficients &an, had
previously been computed on the punched-card computing machines and are
plotted in sketch (d-2) as a check on the accuracy of this technique.)

It is encouraging from the point of view of the general usefulness
of the Fourier method of computing wave drag that,“?or such pesks as

assumed above, if K is finite and O % 0, then };:ﬂAn)z will always

converge ln & fashion related to l/n3 making it possible to Jjudge
roughly the number of terms required.

Application of the method of isolated pesks to the study of conver-
gence.- It was found feasible, when a curve of S! was largely smooth
with one or two sharp peaks, tc determine with the help of equation (9)
at what point the coefficients due +o the smooth part would become neg-
- ligible, and, from that point on, to compute coefficients due to each of
the sharp peaks separately by eilther equation (8) or equation (9). This
was done out to n = 35 for several cases, and to n = 40 for one case,

where the series szn[An(B cos 6)]° failed to converge within the 2k

terms gvailable from the punched-card computing machines. Sketch (e)
m .

shows a typical plot of X n(An)? sgeinst m. Additional points

n=1
beyond m = 2k are plotted with flags on the symbols.

It must be remembered
that, after computing coeffi- : 4
clents separately for more 44
than one component of & curve, 2
it is necessary to add the éﬁA”Z 1
coefficients together to get
e total coefficient for each 2
value of n before perform- a |® 4
ing the sgquaring and summing 9% g 76 B4 K 20
operations. Otherwise the m
interference between the compon- Sketch (e)
ents will be lost.

- The phenomenon shown in sketch (e) of apparent C%Pvergence at one

2
point in the series followed by further increase in Zn(An) with

_ I -I n=1
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additional terms can be seen from conslderation of the ahove technique .
to be due, at least in some cases, to the interaction of two or more
peaks, resulting in "beats™ in the total coefficlents Ap where the
component coefficients an,,an,, . . . cancel each other over a certaln
range and later reinforce each other.

In order to assure & valid solution the series should be carried
far enough to £1it the 8S' curve in all its essential parts but not far
enough to plick up extraneous effects from small variations in the curve
such as those due to mumerical or graphléal differentiation.

Applicatlon of the method of isolated peaks to the computatlon of
Pourier coefficients for components added to a baslc conflguraetion.- In
situations where it is desired to add a component to a system of wings
and bodies for which the drag has already been computed by Fourier
series, that is, for which the Fouriler coefficlents are already avallable,
it is possible, using the technique described gbove, to estimate the
effect of the addition. The gradient of ,cross-sectlonal area for the
addition 1s plotted agalnst the ¢ for the entlre configuration, the
Fourier coefficlents are computed separately and added to the original
set. This method was used in evaluating the effect of using slant cuts
through the body for Mach numbers greater than 1.

In the section on computation of S'(xo,B cos 6) for a wing-body
combiration, two simplifications were proposed. One, the use of a con-
gl — normat cus stant average value of y (straight
Pl -—- stant cuts wing root) as one of the limits of

/\\ integration in place of the more
accurste variable limit was found to

0 have a negligible effect on the
s S'(xo,B cos @) curve for the cases con-
8 sidered. The other, the substitution

of S'(_xo)B cos 6 = o lpstead of

8'(xo,B cos 8) for the body of revolu-
-16 tion in’ computing S'(xq,B8 cos 8) of
the system (i.e., the use of normal
cuts through the body regardless of
24 P 6 24 32  Mach number) was found to have a pro-

4 nounced: effect on the curve of
S'(xp,B cos ) of the whole configura-
tion when the changes in cross-sectlonal
area of;the hody were not gradual. .

Sﬁéﬁdﬁuff) shows the extent.to
“whlch the use of slant cuts altered the

) g8 16 24 32 40 with {he indented region of the body
n and the resulting change in the envelope

Sketch (F)

components of the S! curve associated  __ .



Security Classification of This Report Has Been Cancelled

NACA RM AS55A06a S 15

of the Fourier coefficients corresponding to the negstive peak. This
change resulted in more rapid convergence and consequently smaller coef-
ficients for large values of n vwhen slant cuts were used.

The indication is that this simplification, the substitution of
St(x,) of the body for S*'(x,,B cos 8) of the body for M, > 1, should
recelve careful conslderation before it is used even though it is sanc-
tloned by slender theory. If slant cuts through a body of revolution
glve results that differ significantly from those obtained using straight
cuts, then computstion of the wave drag for the body probably exceeds
the bounds of the theory.

Evaluation of Wave-Drag Integrals by Numerical Integration

The double integral in the form given in equation (L) is unsuited
to numerical or graphicel integration because of the presence of a sin-
gularity at x; = x5. An alternate form is displayed by M. Robert
Legendre (ref. (9)) as follows:

) ) 1 t Z[S'(x B cos 8) - S'(x5,B cos 6)]2
_1 1 - 2 dx-dx
' 2 \4[*/; . (xl-x2)2 ’ we
. sz [St(x,B cos 6)]2 ax (10)
o x(1 - x)

Note that in this form no singularity appears at X3 = Xp unless
Stt(x) = .

Within the limitations of the theory, the drag of any system of
wings and bodies for which 8'(xy,B cos 68) is available (eilther as a
curve or a table of numerical values) can be computed directly using
equations (10) and (4b), or a further adjustment can be made to permit
the separate calculation of interference drag and the drag of the
components.

As suggested in connection with the study of the Fourier analysis,
~ the curve S?! may be consldered as the sum of various components
81" + 82" + 8g" + . . . and it can be substituted into equation (10) in

P
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that form. Since the systems for which the wave drag is helng computed
frequently consist of a wing and a body, or a basic configuration and a
modification, it is convenient to divide the derivative of the area dis-
tribution into two parts, thus: If S'(x) = s1'(x) + sp'(x), equa-

tion (10) can be written _ - '

=
n
o] ] o

JFZ sz[sl’(xl) - 511 (%)) axldx25+_zt/“ZES1'(x)]2 dx +

o “o (x1 - %2)2 B o x(1-%)

l A 2 . A 2
1 [s2t(x1) - 82'(x2)] ; [s2t(x)]
= dxqdx 1 —_—dx
P T e e
sz sz [51'(X1)-31'(x2)][82'(x1)"Sé'(xz)l dxydxs +
o Y% (%1 -%2)° L o
21 fz s1'(x)ea’(x) 4 o - (11)

o x(1 - x)

where the first two terms lead to the wave drag of the component asso-
ciated with s,'(x), the next two terms tp that assoclated with sp'(x),
and the last two terms, which need not be, positive, represent the inter-
ference between the two. If the wave drag of the separate components is
known, either from previocus computations br from test data, only the
cross-product terms remain to be computed to give the total wave drag.

FRESENTATION OF RESULTS AND COMPARISON WITH EXPERIMENT

Computations of wave drag have been ‘performed for four of the.wing-
body combinations tested by Whitcomb and ;the results are presented hereln
in comparison with the experimentel wave drag. The Appendix together
with figure 1 give the pertinent data to describe each configuration.

Figures 2 and 3 show typical examples of the 8% curves for the
various configurations. In all cases S' was computed by analytical
methods. Any irregularities, therefore, are due to the combination of
the component parts of the configurationand not to the inaccuracies of
numerical differentiation. It is interesting to notice the difference
in the height and sharpness of the peaks'in S® for the two different
wings. :
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All the configurations shown in figure 1 are sufficiently slender
to fall within the range of applicability of the theory, and it would be
expected that for all of them the wave-drag computations should have
equal chance of success. The basic bodies are the same (cylindrical
behind x = 1/2), the aspect ratios are the same, and the wings are both
reasonably thin with respect to thelr own chord length and with respect
to the body radius. However, closer attention reveals that the body
modification that goes with wing B (i.e., the indentation which is
required to cancel the. wing area exactly at My = 1) is not a gradusl
one, but is concentrsted in a very small Jongitudinal distance. This
is particularly noticeable in comperison with the indentation for wing A
and ils even more obvious when the S' curves of the two configurations
are compared.

m

The partisl sums j{: n[An(B cos 6)]2 have been plotted sgainst m

n=1i
up to m = 24 in each case and are shown in figures LI and 5 for the same
values of B cos & as in figures 2 and 3. It should be noted that there
is s marked failure of the series to converge within 24 terms in several

- cases for wing B and that these coincide with the cases of high, sharp
pesks in S'(xy,B cos 9). For certain cases where convergence was poor,
additional terms of the serles were computed using equation (8) or (9),

- and the summation including these terms is plotted in Pigures L and 5
with £legs on the symbols. '

In all cases considered the wave drag hes been computed from the .
partial sums to n = 2, regardless of convergence, by plotting
24 ‘ -

E:n{An(B cos 6)1° against 6 and integrating graphically from O to 2x.

n=1l

n=i
and 7(a). For several cases where the series failed to converge for
wing B, the additional terms were used and the revised summation is
plotted sgainst @ in figure T7(b)}. The wave-drag coefficient, Cp, is
plotted against Mach mumber in figures 8 and 9. Note that in Pigure 9
there are curves corresponding to both sumatlions. In figure 8 there is
only one set of curves since the convergence within 24 terms was satis-
factory. Figure 8 shows as good agreement as can be expected between
theory and experiment for wing A, both on the baslc and on the modified
body. As in reference 7T, the agreement is poor &t My = 1 but lmproves
with increasing Mach number. For wing B (fig. 9) the agreement is poor

- for Mach numbers near 1 for the wing on the basilc body but the theoretical
curves approach the experimental with increasing Mach number, reaching
good agreement for Mach number greater than 1.06. For wing B on the

- . indented body there is falrly good agreement near a Mach number of 1.
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Good agreement at a Mach number of 1 for & straight-wing model optimized
for Mgy = 1 was also found in reference 10. The agreement between theory
and experiment for wing B on the indented body becomes less satisfactory
as the Mach number increases. However, there is some question concerning
the experimental data for higher Mach numhers. For the range of Mach
numbers presented it is believed possible that reflected waves from the
tunnel walls could have influenced the measured drag coefficlents for the
modified bodies. In reference 11 such an ‘effect was found to exist.

It is interesting that the range of greatest disagreement between
theory and experiment corresponds with the range of poor convergence,
that is, with the range in which the S' curves are characterized by
excesglvely high peaks. Since 1t is to be expected that the use of
slant cuts through the modified region will reduce the height of the
peaks, the wave drag for wing B on the indented body has been recomputed
using slant cuts through the body for the highest Mach number considered,
namely, 1.1. Figure 10 shows the summation plotted agalnst m s&nd
against 6. The resulting values of the wave-drag coefficlent have been
plotted in figure 9, The circle marks the result using 2L terms and the
flagged clrcle, the result using 3% terms. Note that the more rapid
convergence due to the use of slant cuts has made a considerable differ-
ence, about 18 percent in the latter case, although the difference within
2h terms is slight. The appearance of a difference due to using slant
cuts indicates the possibility that the bounds of the theory have been
exceeded.

As a test of the practicability of using & numerical integration
technique, sample computations have been performed using both equa-
tions (105 and (11). The results are plotted in figures 8 and 9 for
comparison with those from the Fourier analysls. Attention is called to
the. fact shown in flgure 9 that the wave drag computed by this method
for wing B on. the basic body is significantly higher than that computed
by the partial sums of the Fourier series using 24 terms, and that the
use of additional terms of the Fourier series Ilmproves the agreement
between the two methods although increasing the disagreement with experi-
ment. However, it should be remenbered that if the series used to com-
pute the wave drag has not converged reasonably well within the number
of terms used, any agreement with experiment mey be fortuitous (possibly
due to the influence of factors such as boundary leyer not considered in
the theory). Note that in figure 8 two values are plotted for Mgy =1
for the wing on the indented body. The polnt indicated by a triangle
was computed by equation (10). For the point marked by a square the
wave drag of the modified region and the interference drag were computed
by equation (11) and added to the wave drag of the wing on the basic body
from previous calculations. In both cases agreement wlth the Fourier
series result is very good. :

These computations were performed using only a slide rule and a
planimeter, and yet the results agree well .with the Fourier series method

S
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where the Fourier series has converged satisfactorily. The method has
the distinct advantage of being a flexible one, permitting the computer

- to work with greater care in critical regions and to achieve accuracy as
good as the initial S'(xgy,B cos 0) curves will permit.

CONCLUDING REMARKS

As might be expected from previocus experience, the theory gives
wave-drag results that are considerably higher than experiment at a Mach
number of 1 for most cases. However, as the Mach number increases, the
agreement between theory and experiment becomes very good for wing A
and for wing B on the basic body. ¥or wing B on the modified body, the
computed wave drag departs from the experimental as the Mach number
increases slthough the agreement is good near a Mach number of 1.

Consideration of the two computational methods used to evaluate the
integrals indicates that the Fourier series technique has the advantage
of speed and standardization when punched-card or other mechanized com-

- puting systems are available. When the gradient along the body axis of
crogs-sectional ares of the configuration is smooth enough for & reason-
gble number of harmonics to provide a good £it to the curve, the Fourler

- series method gives satisfactory results. Care should be taken to check
the goodness of £it, or the convergence of the series. The method based
on Legendrets formula is not so fast and requlres more attention to
detall on the part of the computer, but it is very flexible and is cer-
tainly to be preferred in the absence of mechanized computing devices.
Either the method based on legendret!s formuls or the Fourier analysis
can glve a falrly rapid estimate of the effect of a component to be
added to a basic configuration.

In general, the methods discussed in this report for evaluating the
wave drag of a wing-body combinatlon agree well among themselves and
show good agreement with the experimental values when the confiligurstion
is sufficiently slender and when the derivative along the body axis of
the area distribution is smooth.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Jan. 6, 1955
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APPENDIX °
DESCRIPTION OF COMPONENTS FOR WHICH COMPUTATTONS WERE PERFORMED

A. Basic body

f or O -~ .- R . JR—

where - . Ll Lo
ro = maximum radius = 1.875 inches
1 = length of body = 43 inches

1
for =2<x<1
2

r = To

B, Modified, or indented, body

for 0 <x< 3

2

same as baslc body

for L <x<1

r =r, except in the region of the wing
where

S(x)body = mrg® - S(x)wing

that 1s, the body was indented, still remaining circular in cross section,

so that the cross-sectional area of the wing-body combination in planes
perpendicular to the x axis was always equal to that of the basic body

alone. In each case the wing was attached just back of the mid-point of

the body. ! -
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C. Wing A

- - Wing tested by Whitcomb and described in reference 1 as “sweptback
wing."”

quarter-chord line swept back 45°

taper ratio = Q.6

aspect ratio = &

NACA 65A006 sections in stream direction
span = 24 inches o

i

wing srea = 14}t square inches

D. Wing B

Wing tested by Whitcomb and described in reference 1 as “unswept
_ .wing-“

quarter-chord line unsweph

taper ratio = 0

aspect ratio = L

maximm thickness 4-percent chord

position of maximum thickness 40-percent chord
cross section in stream direction circular arcs
span = 24 inches

wing srea 14l square inches
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Figure 2.- Variation of 8'(xo,B cos 6} with ¢ for wing A for three
values of B cos @.
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Figure 3.- Varistion of S'(xo,B cos 6) with ¢ for wing B for three
values of 8 cos 8.
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—— Theory (24 terms of Fourier Series )
- Experiment (Ref.l)

Computed using Eq. (10)

Computed using Egq. (ll1) by adding the
effect of the body modification to
the drag of the wing and basic body
as obtained from previous Fourier
series calculations.

(Both points are for wing and indented body)
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Figure 8.- Wave-drag coefficient vs. Mach number for wing A in combina-
tion with basic body and indented body.
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Figure 9.- Wave-drag coefficient vs. Mach number for wing B in combina-
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